J. of Ultra (_:(_Jmp. and I.T. Vol.1(1), 49-53 (2010). ISSN 2229-3531 (Print)
www.compitjournal.org 2455-9997 (Online)

Distributed remote method invocation

'ANIL RAJPUT, 2NEERAJ BHARGAVA *HEMRAJ SINGH THAKUR,
‘MANMOHAN SINGH ard *SHIVSHAKTI SHRIVASTAV

"Head of Dept. Maths & Computer Science, Sadhuvasvani College,Bhopal (M.P.) (INDIA)
?Head of Dept. Computer Application , MDS University Ajmer (Rajasthan) (INDIA)
*Lecturer, Department of Computer Science, Kendriya Vidyalaya, Jaipur (Rajasthan) (INDIA)
*Lecturer, Department of Computer Science, BIST, Bhopal (M.P.) (INDIA)
3Lecturer, Department of Computer Application, SCOPE, Bhopal (M.P)Y(INDIA)

(Acceptance Date 24th February, 2010)

Abstract

An emerging trend in the Signal and Image Processing (SIP)
community is the appearance of middleware and middleware standards
that can be readily exnloited for cistributed computing applications by
the SIP community. High performance computing and High Performance
Embedded Computing (HPEC) applications will benefit significantly from
highly efficient & portable computational middleware for signal & image
processing. Open middleware standards such as VSIPL, MPI. CORBA,
Data mining RMI, and Web Services {based on SOAP/XML), offer a
unique opportunity for the rapid development of easily maintained HPEC
codes that combine portability and flexibility across a number of
applications This middleware infrastructure will support the rapid
development and deployment of portable, efficient, SIP critical
applications that will be of immediate benetit to many. The use of
distributed computing technologies for problem solving has been around
for many ycars. The early paradigm of distributed computing has been
that of remote procedure calls (RPC). However, in recent years, this
paradigm has shifted to the use of remote objects due to the acceptance
of object oriented programming practices. Even today web services are
built around the concept of messaging and frequently these messages
take the form of request/response-type remote procedure calls on remote
objects. The existing and emerging standards for performing distributed
computing have resulted in several possible middleware choices for the
SIP community. This paper focuses on three specific middleware
standards for distributed computing, namely: the Common Object
Request Broker Architecture (CORBA).

Index Terms: Remote method invocation, Object request broker,
Inter-object communication, Distributed embedded computer systems,
Distributed object models, data mining AL

Journal of Computer and Information Techncdogy Vol. 1, Issua 1, August, 2010 Pages {1-108]

50
Distributed computing with RMI-

Remote Method Invocation (RMI)
technology, first introduced in JDK elevates
network programming to a Higher plane.
Although RMI is relatively easy to use,
remarkably Powerful technology and exposes
the average Data mining developer to an entirely
new paradigm—the world of distributed object
computing,.

RMI Features :

RMI is like a remote procedure call
(RPC) mechanism in other languages. One
object makes a method call into An object on
another machine and gets a result back. Like
most RPC systems, RMI requires that the
object whose method is being invoked (the
server) must already be up and running

Interfaces : the heart of RMI :

The RMI architecture is based on one
important principle: the definition of behavior
and the implementation of that behavior are
separate conccpts. RMI allows the code that
defines the behavior and the code that
implements the behavior to remain separate
and to run on separate JVM’s.

This fits nicely with the needs of a
distributed system where clients are concerned
about the definition of a service and servers
are focused on providing the service.

RMI Architecture Layers :

The RMI implernentation is essentially
buiit from three abstraction layers. The first is
the Stub and Skeleton layer, which lies just

Anil Rajput, et. al.

beneath the view of the developer. This layer
intercepts method calls made by the client to
the interface reference variable and redirects
these calls to a remote RMI service.

; Mozt i3
Heforietiyer

%,

A S

The next layer is the Remote
Reference Layer. This layer understands how

Using RMI:

It is now time to build & working RMI
system>*® and get hands-on experience. In this
section, you will build a simple remote calculator
service and use it from a client program.
A working RM! system is coinposed of several

parts.

e Interface definitions for the remote services
¢ Implementations of *he remote zervices
¢ Stub and Skeleton files

¢ A server to host the remote services

Journal of Computer and Information Technalogy Vol. 1, Issue 1, August, 2010 Pages (1-108)

Distributed remote method invocation.

» An RMI Naming service “hat allows clients
to find the remote services

e Aclass file provider (an HTTP or FTP
server)

e A client program that reeds the remote
services

Parameters in KMI :

We have seen that RMI supports
method calls to remote objects. When these
calls involve passing parameters or accepting
a return value, how does RMI transfer these
between JVMs? What semantics are used?
Does Rivii support pass-by-value or pass-by-
reference? The answer depends on whether
the parameters ar primitive data types.

P S a4 b FTSRA .
Paranicicrs in Singie JVM :

First, we will review how parame-ers
are pessed in a single JVM. The normal
semanice for Data inining technoiogy is pass-
by-value. When a parameter is passed to a
method, the JVM makes a copy of the value,
places the copy on the stack and then executes
the methnd When the code inside a method
uses a parameter, it accesses its stack and uses
the copy of the parameter.

Distributing ANG installing PMI softwanc:

RMI adds support** for a Distributed
Class model to the Data mining platform and
extends Data mining technolcgy’s reach fo
multiple JVM’s. It should not be a surprise that
installing an RMI system is more involved than
setting up a Data mining runtime on a single
computer. In this section, you w |l learn about
the issues related to installing and distributing
an RMI based system.

51

Distributing KMI Classes .

To run an RMI application, the suppor-
ting class files must be placed in locations that
can be found by the server and the clients.
For thic seiver, uie foiiowing classes must be
available to its class loader:

* Remote service interface definitions.

e Remate cervice impiciiicniations

e Skeletons for the implementation classes
(JDK 1.1 based servers only).

¢ Stubs for the implementation classes

¢ Al other server classes

For the client, the following classes
must be availablz to its class loader:

Distributed garbage collection :

One of the joys of programming®® for
the Data mining platform is nct worrving aboiit
memory allocation. The JVM has an automatic
garbage collector that will reclaim the mernory
from any object that has been discarded by
the rinning program. One of the de:ign
objectives for RMI was seamless integration
into the Data mining programming language,
which includes garbage collection. Designing
an eff cient single-machine garbage colle ~tor
is hard; designing a distributed garbage collector
is very hard. The RMI system provides a
reference counting distributed garbage collecion
algorithm based on Modu a-3’s Network
Objects. This system works by having the
server keep track of which clients have requested
access to remote objects running on the server.

Serializinig reinote objects :

When desizning a system using RMI,

Journal of (omputer and Information Tech1ology Vol. 1, Issue 1, August, :'010 Pages {1-108)

52

there are times when you would like to have
the flexibility to control where a remote object
runs. Today, when a remote object is brought
to life on a particular JVM, it will remain on
that JVM. You cannct “send” the remote object
to another machine for execution at a new
location. RMI make.

CORBA servant sends back a response (o
a remoie ORB client ends a request through
its local ORB to a remote orb's servent RMI
vs. CORBA :

RMI pros and cons :

Remote method invocation has
significant features' that CORBA doesn’t
possess - most notably the ability to send new
objects (cude and daia) across a network, and
for foreign virtual machines to seamlessly
handle the new objects Remote method
invocation has been available since JDK 1.02,
and so many developers arc familiar with the
way this technology works, and organizations
may already have systems using RML. Its chief
limitation, however, is that it is limited to Data
mining Virtual Machines, and cannot interface

,,,,,,,,,,,,,,,,, ., A0 LAl v

with other languages.

Creating 3-Tier Distributed Applications
with RM1T :

Creating 3-Tier Applications :

The 2-tier model for applications®°
is the most common model in use today. Many
application designers think only in terms of the
database and the application. The availability
of 2-tier application builders has helped
perpetuate this philosophy. The 2-tier model is
not a “bad thing,” but there are cases in which

Anil Rajput, et. al.

the 3-tier model would be a better choice. Just
to review, the 2-tier modc! consisis of an
application and a database. A 3-tier model
consists of an application, a layer of business
logic, an. Once you break out of the 2-tier mold,
you often start adding multiple tiers. difference
between a 2-tier and 3-tier application design.
You can also divide your application into an
application logic tier and a presentation tier. In
a 2-tier model, the business logic is part of the
application. In smaller applications, this is not
a problem because there may be only one
application implementing a particular business
process. In larger systems, however, many
applications use the same areas of business
logic. In a 2-tier environment, this means that
the business logic is replicated across every

application®”'°.

Conclusions

As it is shown in this chapter, RMI is
a vy compiex standard. The RMi architecture
is based on one important principle: the
definition of behavior and the implementation
of that behavior arc separate concepts. RMI

allows the code that defincs the behavior and
the code that implements the behavior to remain
separate and to run on separate JVM’s.
Comparing RMI and CORBA doesn’t reveal
an optimum salution - one is not “better” than
the other. The properties of these two tech-
nologies lend themselves to different situations.
A comparison of RMI and CORBA helps to
highlight individual strengths and weaknesses,
but the applicability of one technology over the
other depends largely on the purposes for
which it is to be used, the experience of the
developers who will design, implement and
maintain the distributed system, and whether
non-Data mining systems are intended to

Journal of Ccmputer and Information Technology Vol. 1, Issue 1, August, 2010 Pages {1-108)

J. of Comp. and I.T. Vol. 1(1) (2010).

access the system now or in the future.

References

1.

Elfwing, R., Paulsson, U. and Lundberg,
L., Performance of SOAP in Wb Service
Environment Compared to CORBA, In
Proceedings of the Ninth Asia- Pacific
Software Engineering Conference, IEEE,
(2002).

Davis, D. and Parashar, M., Latency
Performance of SOAP Implementations,
In Proceedings of 2nd IEEE/ACM Inter-
national Symposium on Cluster Computing
and the Grid, IEEE (2002).

Gorton, [, Liu, A. and Brebner, P, “Rigorous
evaluation of COTS middleware technology”,
Computer, IEEE, March, pp. 50-55 (2003).

Developer Pack http:

10.

53

Tomcatserver:http://jakarta.apache.org/
tomcat/

. Juric, M.B., Rozman, I. and Hericko, M.,

Performance Comparison of CORBA
and RMI, Information and Software
Technoiogy 42, pp 915-933 (2000).

. Juric, M. B., Rozman, 1., Stevens, A.P.,

Hericko, M. and Nash, S., Java2 Distributed
Object Models In Proceedings of 7th

B B 8 L0

. Zimmermann, O, Tomlinson, M. and Pause,

S. Perspectives on Web Services, Springer-
Vela, Berlin (2003).

Orfali, R., Harkey ID. and Edwards, I
The Essential Distributed Objects Survival
Guide, John Wiley & Sons, Inc. (1996).
“Using Rational Rose 4.0”, Rational
Software Corporation, Santa Clara, Nowv.
(1996).

Journal of Computer and information Technology Vol. 1, Issue 1, August, 2010 Pages {1-108)

