J. of Comp. and I.T. Vol.1(2), 109-122 (2010). ISSN 2229-3531 (Print)
www.compitjournal.org 2455-9997 (Online)

Mobile Agent Technology -Security Threats and Measures
M ARIZVI', R K KAPOOR2, MM MALIK> and SANJAY SHARMA*

"National Institute of Technical Teachers’ Training and Research
Shamla Hills, Bhopal-462002, M.P. (INDIA)
marizvi@hotmail.com
917552661600 (0), 917552547434 (R), 09425012014 (M)

‘ Fax 91755661996
“National Institute of Technical Teachers’ Training and Research
Shamla Hills, Bhopal-462002, ML.P. (INDIA)
sunkapoor@hotmail.com
917552661600 (0), 9175522493255 (R), 09425011468 (M)
Fax 91755661996
>Maulana Azad National Institute of Technology
Department of Physics MANIT, Bhopal-462007, M.P. (INDIA)
Mmjmalik2004@yahoo.co.in
917552670417 (0), 9175522493255 (R), 09827378294 (M)
Fax 9172670562
“Maulana Azad National Institute of Technology
Department of Computer Applications MANIT, Bhopal-462002, M.P. (INDIA)
ssharma66@rediffmail.com
917552670417 (0), 9175522493255 (R), 09425013166 (M)
Fax 9172670562

(Acceptance Date 27th September, 2010)

Abstract

Mobile agent technology offers a new computing paradigm in
which a program, in the form of a software agent, can start its execution
on a host computer that provides the necessary computational
environment to run that agent, suspend its execution on the host
computer, transfer itself to another agent-enabled host on the network,
and resume execution on the new host. Incarnations of current generation
agent can be characterized in a number of ways varying from simple
distributed objects to highly organized software with embedded
intelligence. A mobile agent is a particular type of agent with the ability
to migrate from one host to another where it can resume its execution.

Journal of Computer and Infmmétion Technology Vol. 1, Issue 2, December, 2010 Pages {109-18u,

110

M A Rizvi, et. al.

Thus, as the sophistication of mobile software has increased, the
associated threats to security have also increased. This paper provides
an overview of the varicty of threats that are being faced by the designers
of agent platforms and the developers of agent based applications. The
paper also identifies generic objectives of agent security, and presents
a range of measures for countering the identified threats and fulfilling

these security objectives.

1. Introduction

An agent is defined as “a person whose
job is to act for, or manage the affairs of, other
people”. In the context of computers, software
agents refer to programs that perform certain
tasks on behalf of the user'. Agents are inde-
pendent pieces of software capable of acting
autonomously in response to input from their
environment. Agents can be of differing
abilities, but typically possess the required
functionality to fulfil their design objectives.
To be described as ‘intelligent’, software agents
shouldalso have the ability of acting autonomously
that is without direct human interaction, be
flexible, and in a muiti-agent system, be able
to communicate with other agents that are to
be sacial.

In order to execute, the agents need
amrenvironment. The agent platform provides
the necessary computational eavironment in
which an agent operates. A computer host, the
immediate environment of an agent, is ultimately
responsible for the correct execution and
protection of the agent.

The environment might also need
certain protection from the agents that it hosts.
An agent should, for example, be prevented from
launching a denial of service attack through
consuming all resources on a host, thus preventing

the host from carrying out other things (such
as executing other agents).

Agents may be stationary, always
resident at a single platform; or mobile, capable
of moving among different platforms at
different times. Accordingly the security threats
vary depending on the characteristic of the
agent, whether they are stationary or mobile?
This paper focuses mainly on the security
issues that arise when mobility of agents
comes into picture. Security issues related to
the executing host become even more apparent
for agents that are mobile.

2. Security Threats .

Threats to security generally fall into
three main classes: disclosure of information,
denial of service, and corruption of information.
There are a variety of ways to inspect these
classes of threats in greater detail as they apply
to agent systems. Here, we use the components
of an agent system to categorize the threats
as a way to identify the possible source and
target of an attack.

Because of its nature, the mobile
agents are at potentially greater risk for abuse

and misuse significantly.

There are a number of models existing

Journal of Computer and Information Technology Vol. 1, Issue 2, December, 2010 Pages (109-186)

Mobile Agent Technology -Security Threats and Measures. 11

—
@Q——V Other Host Platform

Other Host Platform

Figure 1. Agent System Model

to describe agent syste:1ns2'("7; however, forthe

discussion of security issues it is adequate to
use a simple model, consisting of two main
components: the agent and the agent piatform.
Here, an agent is comprised of the code and
information related to state that is required to
carry out some computation. Mobility allows

PPN S o S
an agentto move, or hop, among ageni pratiors.

Four threat categories are identified:
threats stemming from an agent artacking an
agent platform, an agent platform attackingan
agent, an agent attacking another agent on the
agent platform, and other entities attacking the
agent system.

2.1. Agent-to-Platform :

The agent-to-platform category represents
the set of threats in which agents take advantage
of security weaknesses of an agent platform
or launch attacks against an agent platform.

This set of threats includes masquerading,
denial of service and unauthorized access.

2.1.1. Masquerading :

When an unauthorized agent claims
the identity of another agent it is said to be
masqueradiig. Tlie masquerading agent may
pose as an authorized agent and may try to
gain access to services and resources to which
it is not entitled.

2.1.2. Denial of Service

The mobile computing paradigm
requires an agent nlatform to accept and cxecute
an agent whose code may have been developed
outside its organization. A rogue agent may
carry malicious code that is designed to disrupt

degrade the performarnce of the platform, or
extract information for which it has no

Journal of Computer and Informa-ion Technology Vol. 1, Issue 2, December, 2010 Pagas {109-185)

112

authorization to access.

Mobile agents can consume an excessive
amount of the agent platform’s computing
resources and can launch denial of service
attacks. These denials of service attacks can be
launched intentionally by running attack scripts
to take advantage of system vulnerabilities, or
it may happen unintentionally by having some
bugs in the programming.

2.1.3. Unauthorized Access :

Each agent visiting a platform must
be subject to the platform’s security policy.
Access control mechanisms are used to prevent
unauthorized users or processes from accessing
services and resources for which they have
not been granted permission and privileges as
specified by a security policy. Applying the
proper access control mechanisms requires the
platform or agent to first authenticate a mobile
agent’s identity before it is instantiated on the
:pla&tfbrm. An agent that has access to a platform
and its services without having the proper
‘authotization can harm other agents and the
platform itself. A platform that hosts agents
must ensure that agents do not have read or
_write access to data for which they have no
authorization, including access to residual data
that may be stored in a cache or other temporary
storage.

2.2 Agent-to-Agent :

The agent-to-agent category represents
the set of threats in which agents take
advantage of security weaknesses of other
agents or launch attacks against other agents.

M A Rizvi, et. al.

This set of threats includes masquerading,
unauthorized access, denial of service and
repudiation.

2.2.1. Masquerade :

Agent-to-agent communication can
take place directly between two agents or may
require the participation of the underlying
platform and the agent services it provides. In
either case, an agent may attempt to disguise
its identity in an effort to deceive the agent
with which it is communicating.

Masquerading as another agent harms
both the agent that is being deceived and the
agent whose identity has been assumed.

2.2.2. Denial of Service :

In addition to launching denial of
service attacks on an agent platform, agents
can also launch denial of service attacks against
other agents. For example, repeatedly sending
messages to another agent, or spamming agents
with messages, may place undue burden on
the message handling routines of the recipient.
Malicious.agents can also intentionally
communicate false or useless information to
prevent other agents from completing their
tasks correctly.

2.2.3. Repudiation :

Repudiation occurs when an agent.
participating in a transaction or communication,
later claims that the transaction or communication
never took place. Whether the cause for
repudiation is deliberate or accidental, repudiation
can lead to serious disputes that may not be

Journal of Computer and Information Technology Vol. 1, Issue 2, December, 2010 Pages (103-186)

Mobile Agent Technology -Security Threats and Measures. 113

easily resolved unless the proper countermea-
sutes are i place. An agent platform cannot
prevent an agent from repudiating a transaction,
but platforms can ensure the availability of
sufficiently strong evidence to support the
resolution of disagreements.

2.3. Platform-to-Agent :

The platfo
the set of threats in which platforms compromise
the security of agents. This set of threats
includes masquerading, denial of service,

rim-to-agent category represents

eavesdropping, and alteration.
2.3.1. Masquerade :

One agent 'p orit can masqueraae
as another platform in an attempt to deceive a
mobile agent as to its true destination and corres-
ponding security domain. The masquerading
platform can hiarm both the visiting agent and
the platform whose identity it has assumed.

When an agent arrives at an agent
platform it is exposing its code, state, and data
to the platform. Since an agent may visit several
platforms under various security domains
throughout its lifetime, mechanisms must be
in place to ensure the integrity of the agent’s
code, state, and data.

2.4. Other-to-Agent Platform .

The other-to-agent platform category
represents the set of threats in which external
entities, including agents and agent platforms,
‘may cause threat to the security of an agent
platform. This set of threats includes masquera-

ding, denial of service, unauthorized access,
and copy and replay.

2.4.1. Masquerade :

Agents can request platform services
both remotely and locally. An agent on a remote
platform can masquerade as another agent and
request services and resources for which it is
not authorized. Agents masquerading as other
agents may act in conjunction with a malicious
platform to help deceive another remote platform
or they may act alone. A remote platform can
also masquerade as another platform and
mislead unsuspecting platforms or agents about
its true identity.

2.4.2. Unauthorized Access

Remote users, processes, and agents
may request resources for which they are not
authorized. Remote access to the platform and
the host machine itself must be carefully
protected, since conventional attack seripts can
be used to destabilize the operating s system and
directly gain control of all resources.

2.4.3. Denial of Service :

Agent platform services can be
accessed both remotely and locally. The agent
services offered by the platform and inter-
platform communications can be disrupted by
common denial of service attacks. Agent platforms
are also susceptible to all the conventional

denial of service attacks aimed at the lunderlymg

Journal of Computer and Information Technology Vel. 1, Issue 2, December, 2010 Pages {109-186}

114

2.4.4. Copy and Replay :

Whenever a mobile agent moves from
one platform to another it increases its exposure
to security threats. A party that intercepts an
agent, or agent message, in transit can attempt
to copy the agent, or agent message, and clone
or retransmit it.

3. Security Requirements :

The users of networked computer
systems have four main security requirements:
confidentiality, integrity, availability, and
accountability. The users of agent and mobile
agent frameworks also have these same
security requirements. This section provides
a brief overview of these security requirements
and how they apply to agent frameworks.

3.1 Confidentiality :

Any private data stored on a platform
or carried by an agent must remain confidential.
Agent frameworks must be able to ensure that
their intra- and inter-platform communications
remain confidential. Eavesdroppers can gather
information about an agent’s activities not only
from the content of the messages exchanged,
but also from the message flow from one agent
to another agent or agents. Since audit logs
maintain a detailed record of an agent’s activities
on the platform, the contents of the audit log
must also be carefully protected and remain
confidential.

3.2 Integrity

The agent platform must protect
agents from unauthorized modification of their
code, state, and data and ensure that only
authorized agents or processes carry out any

M A Rizvi, et. dal.

modification of shared data. The agent itself
cannot prevent a malicious agent platform from
tampering with its code, state, or data, but the agent
can take measures to detect this tampering.
The secure operation of mobile agent systems
also depends on the integrity of the local and
remote agent platforms themselves.

3.3 Accountability :

Each process, human user or agent
on a given platform must be held accountable
for their actions, such as: access to an object,
such as afile, or making administrative changes
to a platform security mechanism. In order to
be held accountable each process, human user,
oragent must be uniquely identified, authenticated,
and audited. Accountability is also essential for
building trust among agents and agent
platforms.

3.4. Availability :

The agent platform must be able to
ensure the availability of both data and services
to local and remote agents. The agent platform
must be able to provide controlled concurrency,
support for simultaneous access, deadlock
management, and exclusive access as required.
Shared data must be available in a usable form,
capacity must be available to meet service
needs, and provisions for the fair allocation of
resources and timeliness of service must be
made.

3.5. Anonymity :

The agent platform may need to
balance an agent’s need for privacy with the

Journai of Computer and information Technology Vol. 1, Issue 2, December, 2010 Pages {109-186)

Mobile Agent Technology -Security Threats and Measures. 115

platform’s need to hold the agent accountable
for its acticns. The platfo
the agent’s identity secret from other agents
and still maintain a form of reversible anonymity
where it can determine the agent’s identity if
necessary and legal. Molsuver, what information
belongs in public agent directories and under
what conditions the information can be
accessed from these directories must also be

form imay be abie to keep

arcfully coniroiied?

O

4. Countermeasures .

Maiiy conventional security techniques
used in contemporary distributed applications
like client-server also have utility as countermea-
sures within the mobile agent paradigm. Here
thcsc couniermeasures are reviewed by
considering those techniques that can be used
to protect agent platforms, separately from
those used to protect the agents that run on

inem.

Most agent systems rely on a common
set of baseline assumptions regarding security.
The Tirst is that an agent trusts the home platform
where it is instantiated and begins execution.
The second is that the home platform and other
equally trusted platforms are implemented
securely, with no flaws or trapdoors that can
be exploited, and behave non-maliciously. The
third is that public key cryptography, primarily
in the form of digital signature, is utilized
through certificates and revocation lists
managed through a public key infrastructure.

4.1. Proteciing the Agent Platform :

One of the main concerns with an

agent system implementation is ensuring that
ageits are not abie to interfere with one another
or with the underlying agent platform. One
common approach foraccomplishing this is to
establish separate isolated domains for each
agent and the platform, and controi aii inter-
domain access. In traditional terms this concept
is referred to as a reference monitor'>.
111 Software-Bused Fauli Isolation :
Scftware-Based Fault Isolation'? is a
method of isolating application mcdules into
distinet fault domains enforced by software.
The technique allows untrusted programs
written in an unsafe language, such as C, to
be executed safely within the single virtual
aadress space of an appiication. Untrusted
machine interpretable code modules are
transformed so that all memory accesses are
confined to code and data segments within their
{auii domain. ‘

Access to system resources can also
ngfier

4.1.2. Safe Code Interpretation :

Agent systems are often developed
using an interpreted script or programming
language. The main motivation for doing this
is to support agent platforms on heterogeneous
computer systems. Moreover, the higher
conceptual level of abstraction provided by an
interpretative environment can facilitate the
development of the agent’s code'*. The idea
behind Safe Code Interpretation is that commands
considered harmful can be either made safe
for or denied to an agent.

Journal of Computer and Informaticn Technology Vol. 1, 1ssue 2, Dezember, 2010 Pages {109-186)

116

One of the most widely used interpre-
tative languages today is Java. The Java progra-
mming language and runtime environment?
enforces security primarily through strong type

safety.

There are many agent systems based
onJava, including Aglets*'* Mole’, Ajanta',
and Voyager*. However, limitations of Java to
account for memory, CPU, and network resources
consumed by individual threads*? and to
support thread mobility” have been noted.
4.1.3. Signed Code :

A tundamental technique for protecting
an agent system is signing code or other objects
with a digital signature. A digital signature
serves as a means of confirming the authenticity
of'anobject, its origin, and its integrity. Typically
the code signer is either the creator of the
agent, the user of the agent, or some entity
that has reviewed the agent. Because an agent
o'perates on behalf of an end-user or organization,
HH commonly use the

S|gnature of the. user as an indicarion of the
authority under which the agent operates.

cryptoalaphy whlch rehes ona pm of keys
associated with an entity. One key is kept private
by the entity and the other is made publicly

available,

Digital signatures benefit greatly from
the availability of a public key infrastructure,
since certificates containing the identity of an
entity and its public key (i.e., a public key
certificate) can be readily located and verified.

M A Rizvi, er. al.

Because the message digest is unique,

nd thus bound to the code. the resulting si gnature
also serves as an integrity mecharism. The
agent code, signature, and public key certiticate
can then be forwarded to a recipient, who can
i i ticity of the

4.1.4. State Appraisal :

The goal of State Appraisal® is to
ensure that an agent has not been damaged
due to alterations of its state information. The
success of the technig ‘
to which harmful alterations to an agent’s state
can be predicted. and countermeasures, in the
form of appraisal functions, can be prepared
before using the agent. Appraisal fuictions aic
used to determine what privileges to grant an
agent based both on conditional factors and
whether identified state invariants hold. An
agent whose state violates an invariani can be
granted no privileges, while an agent whose
state fails to meet some conditional factors may
be granted a restricted set of privileges. Both
the author and owner of an agent produce
appraisal functions that become part of an
agent’s code. An owner typically applies state
constraints to reduce liability and/or control
costs. When the author 2nd owner each digitally
sign the agent, their respective appraisal
functions are protected from undetectable
modification.

4.1.5. Path Histories :

The basic idea behind Path Histories*’
is to maintain an authenticable record of the
prior platforms visited by an agent, so thata newly

Journal of Computer and Information Technology Vol. 1, Issue 2, December, 20710 Pages {109-186)

Mobile Agent Technology -Security Threats and Measures. 117

visited platform can determine whether to

nrocess the agent and what rcsotirce constiaiits
to apply. Computing a path history requires
each agent platform to add a signed entry to

the path, indicating its identity and rhe identity

(SR PRON AU
ofthe next platform

the complete path hi l

be visited, and o suppw
story to the next platform.

4.1.6. Proof Carrying Code :

The approach taken by Proof Carrying
Code’ obligates the code producer to formally
prove that the program possesses safety
properties pieviously siipulaied by the code
consumer e.g., security policy of the agent
platform. Proof Carrying Code is a prevention
technique, while code signing is an authenticity
and identificaiion technique used to deter, but
not prevent the execution of unsafe code. The
code and proof are sent together to the code
consumer where the safety properties can be
verified.

A safety predicate, representing the
semantics of the prograrn, is generated directly
from the native code to ensure that the
companion proof does in fact correspond to
the code. The proofiis structured in a way that
makes it straightforward to verity without using
cryptographic techniques or external assistance.
Once verified, the code can run without further
checking. Any attempts to tamper with either
the code or the safety proof result in either a
verification error or, if the verification succeeds,
a safe code transformation.

4.2. Protecting Agenls :

An agent is completely susceptible to

an agent platform and cannot prevent malicious
oehaviour from occurring, but may be able to
detect it.

The problem stems from the inability
to effectively extend tne trusted environment
of an agent’s home platform to other agent
platforms. While a user may digitally sign an
agent on its home platform before it moves onto
»rin, that protection is limited.

The second platform receiving the
gent can rely on the signature to verify the

o
~

a
surce and integiity of ihe agent’s code, data,
and state information provided that the private
key of the user has not been compromised.
On the agent’s subsequent hop to a third platform,
the initial signature from the first piatform
remains valid for the original code, data, and
state information, but not for any state or data
generated on the second platform. While these

siinple schemes have vaiue, they do not support

%]

the loose roaming itineraries envisioned in many
agent applications.

An idea for the protection of mobile
agents against the attacks of malicious hosts
is to limit the execution time in the hosts.
Malicious hosts need time to analyze and
modify an agent in order to take some profit.
Controlling the execution time in the hosts
permits detecting manipulation attacks
performed by malicious hosts during the
agent’s execution'®

Some more general-purpose techniques
for protecting an agent include the following:

- Partial Result Encapsulation,

Journal of Computer and Informaticn Technology Vol. 1, Issue 2, December, 2010 Pages (109-186)

118

- Mutual Itinerary Recording,
- ftinerary R i0i1 and
Voting,

ecording with Replicat

- Execution Tracing,

- Envirenmental K

ey G .Pnpmhnn

- Computing with Encrypted Functions, and

" Obfuscated Code (Time Limited Blackbox).
4.2.1. Partial Result Encapsulation :

One approach used to detect tampering
by malicious hosts is to encapsulate the results
of an agent’s actions, at each platform visited,
for subsequent verification, either when the
agent returns to the point of origin or possibly
at intermediate points as well. Encapsulation
may be done for different purposes vvith different
mechanisms, such as providing confidentiality
using encryption, or for integrity and accoun-
tability using digital signature. In general, there
are ihree alternaiive ways to encapsilate
partial results:

Provide the agent with a means for encaps-
uiating the informaiion,

Rely or the encapsuilation capatilities of the
agent platform, or

Al to by
d third party to tin

digital fingerprint of the results.

-
[
w
4

er method for an agent to
result information is to use Partial

Anothe

encanci l at
ncapsuiate

Result authentxcatlon Codes (PRAC)", which
are cryptographic checksums formed using

secret key cryptography (i.c., message authen-
tication f‘r\rlr:u\ The PRAC fnr‘!‘\nmnp hac a

U L

number of Ilmltatlons. The most serious occurs

Journal of Computer and Information Technology Vol. 1, Issue 2,

M A Rizvi. et al.

when a malicious platform retains copies of
the original keys or key generating functions
of an agent.

Yee, who proposed the PRAC technique,
noted that forward integrity could also be
achieved using a trusted third party that
performs digital time-stamping. A digital
timestamp'® allows one to verify that the
contents of a file or document existed, as such,
at a particular point in time.

4.2.2. Mutual Itinerary Recording

One variation of Path Histories is a
general scheme for allowing an agent’s itinerary
to be recorded and tracked by another cooperatin g
agentand vice versa’. ina mutually supportive
arrangement. When moving between agent
platforms, an agent conveys the last platform,
current platform, and next platform information
to the cooperating peer through an authenticated
channel. The peer maintains a record of the
itinerary and takes appropriate action when
inconsistencies are noted. Attention is paid so
that an agent avoids platforms already visited
by its peer.

4.2.3. Itinerary Recording with Replication
and Voting :

A faulty agent platform can behave
similar to a malicious one. Therefore, applying
fault tolerant capabilities to this environment
should help counter the effects of malicious
platforms. One such technique for ensuring
thata mobile agent arrives safely at its destination
is throngh the use of replication and voting'®.

The idea is that rather than a single copy of an

December, 2010 Pages {109-186)

Mobile Agent Technology -Security Threats and Measures. 119

agent performing a computation, multiple
copies of the agent are used. Although a malicious
platform may corrupt a few copies of the
agent, enough replicates avoid the encounter
to successfully complete the computation. For

P e T s
i, v ptat

........ comiputatioi
ensures that arriving agents are intact, carrying
valid credentials. Platforms involved in a particular
stage of a computation are expected to know
the set of acceptable plaiforins for the previous
stage. The platform propagates onto the next
stage only a subset of the replica agents it
considers valid, based on the inputs it receives.
One drawback of this approach is that, the
additional resources consumed by replicate
agents.

Steian Pieisch and Andre Schiper
identifies two important properties for fault-
tolerant mobile agent execution: nonblocking
and exactly-once. Nonblocking ensures that the
agent execution can proceed despite a single
failure of the agent or the machine, which is
undesirable with operations that have side
effects. Hence, they propose that fault-tolerant
mobile agent execution be modeled as a sequence

of agreement problems'”,

4.2.4. Exccution Tracing :

Execution tracing® is a technique for
detecting unauthorized modifications of an
agent through the faithful recording of the agent’s
behaviour during its execution on each agent
platform. The technique requires each platform
involved to create and retain a nonrepudiable
log or trace of the operations performed by the
agent while resident there, and to submit a
cryptographic hash of the trace upon conclusion

as a trace summary or fingerprint. A trace is
coiniposed of a sequence of statement tdentifiers
and platform signature information. The
signature of the platform is needed only for
those instructions that depend on interactions
with the compuiational environment mantained
by the platform.

4.2.5. Environmenial Key Generation .
Environmental Key Generation®°
describes a scheme for allowing an agent to
take predefined action when some environmental
condition is true. The approach centres on
constructing agents in such a way that upon
encountering an environmental condition (e.g.,
string match in search), a key is generated,
which is used to uniock some executable code
cryptographically. The environmental condition
is hidden through either a one-way hash or
public key encryption of the environmental
trigger. The technique ensures that a platform
or an observer of the agent cannot uncover
the triggering message or response action by

directly reading the agent’s code.

One weakness of this approach is that
a platform that completely controls the agent
could simpiy modity the agent to print out the
executable code upon receipt of the trigger,
instead of executing it. Another drawback is
that an agent platform typically limits the
capability of an agent to execute code created
dynamically, since it is considered an unsafe
operation.

4.2.6. Computing with Eincrypted Functions:

The goal of Computing with Encrypting

Journal of Computer and Information Technology Vol. 1, Issue 2, December, 2010 Pages {109-186)

120

Functions'' is to determine a method whereby
mobile code can safely compute cryptographic
primitives, such as adigital signature, even though
the code is executed in untrusted computing
environments and operates autonomously

H tyrb e i PSS NS N
without intcractions with the

hoime platforn.
The approach is to have the agent platform
execute a program embodying an enciphered
function without being able to discern the original
function; the approach requires differentiation
between a function and a program that
implements the function.

4.2.7. Obfuscated Code :

Hoh!?' gives a detailed overview of
the threats stemming from an agent encountering
a malicious host as motivation for Blackbox
Security. The strategy behind this technique is
to scramble the code in such a way that no one
is able to gain a complete understanding of its
function (i.e.. specification and data), or to
modify the resulting code without detection. A
serious problem with the general technique is
thatthere is no known algorithm or approach
for providing Blackbox protection. A time limited
variation of Blackbox protection is introduced
4s a reasonable alternative, whereby the
strength of the scrambling does not necessarily
imply encryption as with the unqualified one,

but relies mainly on obfuscation algorithms.

One serious drawback to this technique
is the lack of an approach for quantifying the
protection interval provided by the obfuscation
algorithm, thus making it difficult to apply in
practice.

Another approach is suggested by
Min-Hua-Shao and Ziyanying zhou. This

M A Rizvi, et. al.

approach allows the proper handling of time-
sensitive offers and supports the gradual
decision-making execution”’.

5. Conclusion

Execution of mobile agents on untrusted
platforms is a factor introducing non-trivial
security concerns, in particular related to
correct agent execution and confidentiality of
agent data. A wide variety of techniques for
implementing security in agent systems is
available. Not all are compatible with one another,
nor are they aii suitabie for most applications.
Many of these techniques must be implemented
within the framework of the agent system,
while a number of them can be applied
independentiy within the context of the
application.

While elementary security techniques
shouid prove adequate tor a number of agent-
based applications, many applications are
expected to require a more comprehensive set
of mechanisms. Moreover, to meet the needs
of a specitic application, a flexible framework
must exist in which a subset of mechanisins
can be selected and applied.

The required security level and security
measures must, as always. depend on the
application. Current standardisation efforts are
likely to facilitate greater use ot agent technology
in the future. There does not seem to be a single
solution to the security problems introduced
by mobile agents. Solutions to certain problems
do exist, sut for mobile agents 10 he more
widely adopted this is an area that requires
further research.

Jeurnal of Computer and Information Technology Vol. 1, Issue 2, December, 2010 Pages (109-186)

Mobile Agent Technology -Security Threats and Measures.

6. References

1.

Parineeth M. Reddy, “Mobile Agents
Intelligent Assistants on the Internet”,
RESONANCE July (2002).

. A. Fuggetta, G. P. Picco, and G. Vigna,

“tnderstanding Code Mobility.” IEEE
Transactions on Software Engineering,
24(5), May (1998).

. Markus Straller, Joachim Baumann, Fritz

Hohl, *Mole - A Java Based Mobile Agent
System,” in M. Miihlhduser (ed.), Special
Issues in Object Oriented Programming,
Verlag, pp.301-308 (1997).

. “ObjectSpace Voyager Core Package

Technical Overview,” version 1.0, Object
Space Inc., December (1997).

. Min-Hua-Shao, Ziyanying zhou “Protecting

mobile-agent data collection against blocking
attacks” Computer Standards & Interfaces
28, Issue5 (June2006) pp 600-611, 2006.
William Farmer, Joshua Guttman, and
Vipin Swarup, “Security for Mobile Agents:
Authentication and State Appraisal,”
Proceedings of the 4th European Symposium
on Research in Computer Security
(ESORICS °96), September, pp. 118-130
(1996).

G. Necula and P. Lee, “Safe Kernel Exten-
sions Without Run-Time Checking,” Procee-
dings of the 2nd Symposium on Operating
System Design and Implementation (OSDI
’96), Seattle, Washington, October, pp.
229-243 (1996).

. Giovanni Vigna, “Protecting Mobile Agents

Through Tracing,” Proceedings of the 3rd
ECOOP Workshop on Mobile Object
Systems, Jyvalskyla, Finland, June (1997).
Volker Roth, “Secure Recording of Itineraries

14.

121

Through Cooperating Agents,” Proceedings
of the ECOOP Workshop on Distributed
Object Security and 4™ Workshop on Mobile
Object Systems: Secure Internet Mobile
Computations, pp. 147-154, INRIA, France
(1998).

Stefan Pleisch, Andre Schiper, “Fault-
Tolerant Mobile Agent Execution”, IEEE
Transactions on Computers Volume 52,
February (2003).

. Thomas Sander and Christian Tschudin,

“Protecting Mobile Agents Against Malicious
Hosts,” in G. Vinga (Ed.), Mobile Agents
and Security, Springer Verlag, Lecture
Notes in Computer Science No. 1419,
(1998).

“Trusted Computer System Evaluation
Criteria,” Department of Defense,
CSCSTD-001-83, Library No. S225 711,
August (1983).

. R.Wahbe, S. Lucco, T. Anderson, “Efficient

Softwarc-Based Fault Isolation,” Procee-
dings of the Fourteenth ACM Symposium
on Operating Systems Principles, ACM
SIGOPS Operating Systems Review, pp.
203-216, December (1993).

John K. Ousterhout, “Scripting: Higher-
Level Programming for the 21st Century,”
IEEE Computer, March, pp. 23-30 (1998).

.- Neeran Karnik, “Security in Mobile Agent

Systems,” Ph.D. Dissertation, Department
of Computer Science, University of Min-
nesota, October (1998).

. Oscar Esparza, Miguel! Soriano, Jose L.

Munoz, Jordi Forne, “A protocol for
detecting malicious hosts based on limiting
the execution time of mobile agents”,
Proceedings of the Eighth IEEE International
Symposium on Computers and Commu-

Journal of Computer and Information Technology Val. 1, Issue 2, December, 2010 Pages (109-186)

122

20.

nications, pp. 231 (2003).
Bennet 8. Yee, “A Sanciuary tor Mobile
Agents,” Technical Report (CS97-537,
University of California in San Diego, April
28, (1997).

Stuzrt Haber and Seoii Stornetta, “How
to Time-Stamp a Digital Document”,
Journal of Cryptology, vol. 3, pp.99-111,
(1991).

F.B. Schincider, “Towards Fault- lolerant
and Secure Agentry,” Proceedings 11"
International Workshop on Distributed
Algorithms, Saarbucken, Germany,
September (1997).

James Riordan and Bruce Schneier,
“Environmental Key Generation Towards

21.

22

J.of Comp. and 1.T. Vol.7(2) (2010).

Clueless Agents, ” Gi. Vinga (Ed), Mohile
Agents and Security, Springer - Verlag,
Lecture Notes in Computer Science No.
1416, (1998).
Fritz Hohl,
Security: Protecting Mobile Agents From
Malicious Hosts.” G. Vinga (Ed.), Mobile
Agents and Securiy. pp. 92-112, Springer-
Verla z, Lecture Notec in Computcr Scicice
No. 1419 (1998).

Grzegorz Czajkowski and Thorsten von

“Time @imited Rlackhox

- Eicken, “JRes: A Resource Accounting

Interface for Java,” ACM Conizicice oi
Object Oriented Languages and Systems
(OOPSLA), Vancouver, Canade, October
(1998

Joutnal of Computer and Information Technology Vo!. 1, Issue 2, Dece niber, 2010 Pagu:s (109-186)

