
Hybrid Architecture for Query Optimizers Using Checkpoints
with Plan Reduction Algorithms

DEEPIKA MALVIYA, SYED IMRAN ALI and ZOHA USMANI

Department of CSE, Sagar Institute of Science Technology and Research,
Ratibad, Bhopal-462044 (M.P.) (India)

deepamalviya19@gmail.com
@yahoo.co.in

(Acceptance Date 4th August, 2016)

Abstract

Query Optimization is an important component of all Database
Systems. Designing optimizers which takes less search time yet provides the
most optimal query execution plan has been a challenge for DBMS research
community in the last decade. Most of the optimization techniques focus on
the static compilation of selectivity of base relations. The cost of executing a
plan depends heavily on selectivity which keeps changing frequently and thus
static compilation provides an inconsistent performance. Adaptive query
optimization is an excellent method of generating optimal plans consistently.
This paper proposes new hybrid architecture for query optimizers which
combine features of adaptive query processing and also reduces the search
space for re optimization using reduced plan diagrams and cost diagrams. This
hybrid architecture is bound to give more efficient performance as compared to
any other optimization technique along with increased robustness and a
substantial increase in consistency of selecting most optimal execution plan.

Key words : Query Optimization, Selectivity, Plan Cardinality, Plan
Diagrams, Checkpoints

J. of Ultra Comp. and I.T. Vol. 7(1), 14-18 (2016). ISSN 2229-3531 (Print)
www.compitjournal.org 2455-9997 (Online)

I. Introduction

Query Optimization is a non trivial task for
every commercial database management systems. It is
that step in query processing that determines how much
time will be consumed for executing a query. Since SQL
query is declarative in nature, no information regarding
execution sequence is provided by the user. Thus finding
out the optimal sequence of execution becomes the
overhead of database query optimizers. Query processing
is a multi step process. A simple query written in a
declarative language such as SQL is first converted to an
equivalent relational algebra expression and is then
converted into a query tree which is primarily left deep
or right deep trees as shown in Fig. 1(11).

Q1: SELECT Lname FROM EMPLOYEE,
WORKS_ON, PROJECT WHERE Pname=’Aquarious’
AND Pnumber=Pno AND Essn=Ssn AND
Bdate>’1957-12-31’

Fig. 1. Query tree for Q1

PROJECT

EMPLOYEE WORKS_ON

π Lname
 σ Pname=’Aquarious’ AND Pnumber=Pno AND

Essn=Ssn AND Bdate >’1957-12-31

X

X

Deepika Malviya, et al. 15

Problem in query optimization is that many
such Query trees can be constructed by shuffling the
positions of leaf nodes and non leaf nodes or by changing
the relational algebra operations (such as using a hash
join instead of nested loop join). Each such query tree
corresponds to a specific query execution plan.

The task of a query optimizer is to analyze
all the query execution plans and select the optimal
plan for executing the query. The selection for best plan
is done by applying some rules (heuristics optimization)
and by using some cost functions (cost based optimization).
The number of query execution plans (hereby referred
as QEP) for a given plan orthe plan cardinality may be
huge which makes it impossible to analyze each and
every plan for optimality. If much time is spent in just
searching the best plan, its execution won’t prove to be
much beneficial. Thus a tradeoff between searching time
and execution time is necessary. Because of this most
query optimizers put efforts to search for the near
optimal QEP instead of searching for the most optimal
plan.

Another problem faced by optimizers is the
selectivity of base relations. The choice for best plan is
made on the basis of some complex cost functions whose
major parameters are the selectivity of base relation.
Since the selectivity keeps on changing frequently the
cost calculation becomes wrong and a sub optimal plan
may get selected. Thus a dynamic calculation of
selectivity is required for getting correct value of cost
functions. Static compilation of selectivity is highly
prone to errors.

This paper proposes a new architecture for
Query optimizers which combine features from two
techniques, one for handling selectivity problem and
another for reducing plan cardinality.

II. Related Work :

A lot of research work has been done on SQl
query optimization in the last decade with none of them
addressing both problems of selectivity and plan
cardinality. Some major contributors are4, 1,12. All these
methods were effective but used static compilation of
selectivity. Also search space reduction was not well
taken care of by any of these techniques. But5 suggests
a very practical approach of eliminating the problem of
wrong selectivity estimation. Another pioneer work
suggested in6 uses a tool named Picasso for reduction of

plan diagrams for reducing search space. This paper
uses both these techniques to develop new hybrid
architecture for query optimizers.

III. Using Plan Diagrams For Query Optimization :

Plan diagram reduction is a novel way for query
optimization. A plan diagram as defined in7 is a color
coded pictorial enumeration of the QEP choices of the
optimizer over the query parameter space. QEP choices
are primarily functions of the selectivity of base relations
in queries. Using PICASSO tool for QEP analysis we
can perform reduction on the number of QEP for a
given query. Some threshold value is required for plan
cardinality reduction by the process of swallowing9

which indicates an increase in cost of the QEP. As proven
in7, a 20% cost increase can reduce the number of queries
near about 10 which can significantly decrease the
searching time of optimizers. For complete description
of plan diagrams and PICASSO tool see7,9,6,14.

IV. Progressive Optimization Using Checkpoints :

Since selectivity keep on changing frequently,
any method based on static selectivity estimates may
not deliver a consistent performance. On the contrary
we can go for complete dynamic estimation of selectivity
as in1. But most practical way to eliminate selectivity
errors is to apply re optimization along with selectivity
estimates at run time5. This is done by inserting CHECKS
at selected points in the query execution tree (Fig. 2).

Using these checkpoints we can identify
whether the selectivity of base relation or the
intermediate results is within the expected limits or it
has crossed the limits? This information derived at a
checkpoint is then used to decide whether to stick on to
a QEP or to make some reordering of operators and
base relations. As shown in Fig 2, we use a CHECK to
determine the selectivity of R1. If the selectivity exceeds
the validity limit we replace hash-join with hybrid hash
join which gives better performance if the hash file is
too large to be saved on the main memory. Since the
Checks calculate current selectivity, the chances of errors
are very less. But excess of checkpoint can also slow
down execution time. So there is a risk and opportunity
tradeoff due to which it is important to determine how
many CHECKS are to be inserted and where to be
inserted.

16 Hybrid Architecture for Query---with Plan Reduction Algorithms.

V. Our Contribution

This paper proposes hybrid architecture of
query optimizers which combine features of adaptive
query optimization and reduction of plan cardinality.
The problem in using CHECKS is that during re
optimization we need to repeatedly search large numbers
of structurally equivalent plan (fig. 4). Since there is
plethora of such additional plans, re optimization time
becomes huge which may degrade the performance of
optimizer. In any other technique this search is performed
just once before the execution of query begins. Also
computing the validity ranges for CHECKS is time
consuming. Thus there is a need of decreasing the re
optimization time by reducing the plan cardinality which
is achieved by using reduced plan diagrams.

a. Proposed Architecture :

This paperconsideres some additional stages
apart from the basic stages in query optimizers and also
appended some additional features in the basic stages.
The overall architecture is shown in fig. 3.

b. Benefits of Hybrid Approach :

This architecture includes the basic
components of a query optimizer with additional
features to incorporate CHECKS and one additional
block is used to include Plan/Cost Diagrams in the overall
process. The benefits of this hybrid architecture are
twofold as described:

P1

Hash-Join

R1

R2
CHECK

P2

Hybrid Hash-Join

R1 R2

P1

Hash-Join

R1 R2

(Re optimized QEP)

(Original QEP)

Fig. 2 Using CHECKS for re optimization

 Scanning

Parsing

Validating

Generate QEP
 using heuristics

Optimize / Regenerate
QEP using cost based
optimizers

Use plan and cost
diag. to find validity
range/alternate plan

Query code generation

Execution of Query

Add CHECKS

Validity
violated at
CHECK

Yes, reoptimize

NO

1. The only instance of plan/cost diagrams occur in the
5th stage when a QEP is being generated and before
CHECKS are inserted into the QEPs. We use Plan/Cost
diagrams at this stage to find near optimal QEP and the
validity range for CHECK.

 Validity range is computed during plan pruning
and enumeration phase. A reduced enumeration of plans
can be generated by reducing plans by giving the cost
increase tolerance factor. Now, validity computation
and plan pruning is carried out concurrently. For pruning
sub optimal plans we compare each pair of plans based
on their input cardinalities. The plans being compared
must be structurally equivalent Fig. 4

For, pruning we compare the cost of P1 and
P2 at their root nodes. Suppose that cost of P1 exceeds
cost of P2, and then P1 will be pruned. To find the

Fig. 3. Hybrid architecture of Query Optimizer

Result of Query

validity range we continue using the modified Newton-
Raphson method.

Fig. 4 Two structurally equivalent plans

The benefit we get using reduced plan/cost
diagram is that Newton-Raphson method is repeatedly
used for evaluation of cost functions for large number
of plans. Using plan diagram reduction we can reduce
the number of such pairs because of which pruning and
validity calculation can be done more quickly. As proved
in7 if cost increase threshold of 20% is tolerable then
the total number of reduced plans remains near about
10. This is a substantial decrease in number of plans
which can allow us to insert more number of CHECKS
in the QEP as validity calculation time is minimized.
With more number of CHECKS the robustness of QEP
will increase.

2. The same instance of Plan Diagrams in the 5th stage
can be used to search for the alternative plan in case the
CHECK operator detects the current QEP to be sub
optimal as the selectivity of input edges to a relational
operator bypasses the validity range.

Suppose as in Fig. 2, the CHECK operator
detects the selectivity of left edge in plan P1 is very
large so that the hash file cannot be saved on the main
memory rather it has to be saved on disk. In this case
simple hash-join will become complex and so it becomes
important to replace it with either hybrid hash join or
partition hash join11. Such replacements can be easily
done using the plan diagrams by using the cost
information of the available additional plans. Since the
CHECK operator has generated the exact selectivity of
input edge, using this information we can perform a
search for the alternate plan in the reduced search space.
We need to search for new plan only in the limited

 P1

Hash-Join

R1 R2

 P2

Hybrid Hash-Join

R1 R2

selectivity space using selectivity information form
CHECK operator.
VI. Future Work :

Implementation of the proposed architecture
is the most challenging task. We are in process of
implementation of this architecture and hope to discover
many other possibilities of optimization during its
implementation. Once such architecture is implemented
we can go ahead for the performance analysis of this
architecture using TPC-H query set.

VII. Conclusion

Static query optimization suffers from the
fact that correct estimates of selectivity/cardinalities
are hard to be made as they keep changing frequently
and thus may result in poor selection of QEP. Progressive
query optimization uses a runtime approach for
estimating correct selectivity using CHECKS and
performs re optimization if required. Integration of Plan/
Cost Diagrams with CHECKS further improves the
efficiency of query optimizer by reducing the search
space and minimizing validity calculation time. Further
the overall QEP used for query execution is supposed
to be very robust in nature.

Since we are in the initial stages of developing
such architecture the information presented is very
abstract. As we proceed to implement such architecture
we expect many other parameters which will require
substantial attention and may open new areas of
research.

References

1. R Avnur and J. M. Hellerstein, Eddies: Continuously
Adaptive Query Optimization, SIGMOD (2000).

2. G. Graefe and K. Ward, Dynamic Query Evaluation
Plans, SIGMOD (1989)

3. R Cole and G. Graefe. Optimization of Dynamic
Query Evaluation Plans, SIGMOD (1994).

4. A. Hulgeri and S. Sudarshan. Parametric Query
Optimization for Linear and Piecewise Linear Cost
Functions, VLDB (2002).

5. V. Markl, V. Raman, D. Simmen, G. Loman, H.
Pirahesh, M. Cilimdzic, Robust Query Processing

Deepika Malviya, et al. 17

through Progressive Optimization, SIGMOD
(2004).

6. N. Reddy, J. R. Haritsa, Analyzing Plan Diagrams
of Database Query Optimizers, VLDB (2005).

7. N A. Dey, S. Bhaumik, Harish D. and J. Haritsa,
Efficiently Approximating Query Optimizer Plan
Diagrams, VLDB, (2008).

8. A. Deshpande, Z. Ives and V. Raman, Adaptive
Query Processing, Foundations and Trends in
Databases, (2007).

9. Harish D., P. Darera and J. Haritsa, Robust Plans
through Plan Diagram Reduction, VLDB (2005).

10. R Avnur and J. M. Hellerstein, Eddies: Continuously

Adaptive Query Optimization, SIGMOD (2000)
11. R. Elmasri, S. B. Navathe, Fundamentals of

Database Systems, 5th edition
12. M. Stillger, G. Lohman, V. Markl, and M. Kandil,

LEO – DB2’s Learning Optimizer, VLDB (2001).
13. V. Poosala, et. al, Improved Histograms for

Selectivity Estimation of Range Predicates,
SIGMOD (1996).

14. Picasso Database Query Optimizer Visualizer,
http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

15. Mahajan Chetas Subhash, Producing on the fly
anorexic plan diagrams using AniPQO

 dsl.cds.iisc.ac.in/publications/thesis/chetas.pdf

18 J. of Ultra Comp. and I.T. Vol. 7(1), (2016).

